C.U.SHAH UNIVERSITY Winter Examination-2022

Subject Name: Mathematical Methods-II

Subje	ect Cod	e: 5SC04MAM1	Branch: M.Sc. (Mathematics)	
Seme Instr	ster: 4 uctions	Date: 22/09/2022	Time: 02:30 To 05:30 Mar	ks: 70
(1 (2 (3 (4) Use (2) Instruction 3) Draw 4) Assu	of Programmable calculator and a uctions written on main answer b v neat diagrams and figures (if ne me suitable data if needed.	ny other electronic instrument is prohibit bok are strictly to be obeyed. cessary) at right places.	ted.
		SEC	ΓΙΟΝ – Ι	
Q-1		Attempt the Following questio	ns	[07]
-	a.	Write second form of Euler's eq	uation.	(01)
	b.	Prove that the shortest distance l line.	between two points in a plane is a straight	t (02)
	c.	Define Symmetric Kernel .		(02)
	d.	Explain Isoperimetric problem.		(02)
Q-2		Attempt all questions		[14]
	a.	Show that geodesics on sphere of	f radius a are great circles.	(08)
	b.	Solve the functional $I[y(x)] = $.	$\int_{0}^{\pi/2} (y''^2 - y^2 - x^2) dx$ with the	(06)
		conditions $y(0) = 0, y'(0) = 1,$	$y\left(\frac{\pi}{2}\right) = 1$, $y'\left(\frac{\pi}{2}\right) = 0$.	
0.2		Attempt all quastions	OR	[1.4]
Q-2	я	Attempt an questions If the functional $I[u(x)] = \int^{x_2} dx$	f(x, y, y') dx has the extremum value	[14] (07)
	u.	then show that the integrand f s	(x, y, y) at has the extremum value, atisfy the Euler's Equation	(07)
		$\frac{\partial f}{\partial f}$	$\frac{d}{d}\left(\frac{\partial f}{\partial f}\right) = 0$	
	_	∂y	$dx \left(\partial y' \right)^{-0}$	
	b.	Prove that the extremal of $I[y(x$	$\left[\int_{0}^{2} \frac{y'^{2}}{y'} dx \text{ with } y(0) = 0 \text{ and} \right]$	(04)
		v(2) = 1 is parabola.		
	c.	Find the extremal of the function	$\ln I[y(x)] = \int_{x_1}^{x_2} (1 + x^2 y') y' dx .$	(03)
Q-3		Attempt all questions		[14]
	a.	Prove :		(06)
		$\int_a^x \int_a^{x_n} \cdots \int_a^{x_2} f(x_1) dx_1 \cdots$	$dx_n = \frac{1}{(n-1)!} \int_a^x (x-t)^{n-1} f(t) dt$	

b. Solve the integral equation: $y(x) = 3x^2 + \int_0^x \sin(x-t) y(t) dt$. (05)

	c.	Solve the functional $I[x(t), y(t)] = \int_0^1 (2x + x'^2 + y'^2) dt$ with initial conditions $x(0) = 0, y(0) = 1, x(1) = 1.5$ and $y(1) = 2$.	(03)
0.0		OR	F4 43
Q-3		Colve the Integra differential equation ([14]
	a.	$y' + 4y + 5 \int_0^x y(t) dt = e^{-x}$ where $y(0) = 0$.	(00)
	b.	Show that $y(x) = xe^x$ is a solution of the integral equation $y(x) = sinx + 2\int_{-\infty}^{x} cos(x - t) y(t) dt$	(05)
	c.	$y(x) = stax + 2 \int_0^{\infty} cos(x - t) y(t) dt$. Define Fredhom Integral equation and state Leibnitz's rule.	(03)
		SECTION – II	
Q-4		Attempt the Following questions	[07]
	a.	State Arzela's Theorem.	(01)
	b.	State the Hermite differential equation and reduce it to Sturn Liouville differential equation.	(02)
	c.	Let $y_1(x)$ and $y_2(x)$ be solutions of the homogeneous Fredholm integral	(02)
		equation $y(x) = \lambda \int_a^b K(x, t) y(t) dt$. Then show that	(02)
		$\alpha_1 y_1(x) + \alpha_2 y_2(x)$ is also a solution of given equation.	
	d.	State the Bessel's differential equation and reduce it to Sturn Liouville differential equation.	(02)
0-5		Attempt all questions	[14]
χ-	a.	Let $X = C([a, b])$ or $L^p([a, b])$ where $1 \le p \le \infty$. If $\{x_n\}$ is bounded sequence in X then show that it is bounded in $L^1([a, b])$.	(08)
	b.	Find the eigenvalues and corresponding eigen function of the integral equation $y(x) = \lambda \int_0^1 (2xt - 4x^2)y(t) dt$.	(06)
		OR	
Q-5		Attempt all questions	[14]
	a.	State and prove Fredholm's Alternative Theorem.	(07)
	b.	Solve $y(x) = x + \lambda \int_0^1 xt y(t) dt$ by Resolvent kernel method.	(07)
Q-6		Attempt all questions	[14]
	a.	Reduce the differential equation $x^2y'' + xy' + (k^2x^2 - n^2)y = 0$ into Bessel's differential equation with substitution $t = kx$	(07)
	b.	Reduce the differential equation $xy'' + (1 + 2\lambda)y' + xy = 0$ into	(07)
		Bessel's differential equation with substitution $x^{\lambda}y = z$.where $\lambda \in R$. and reduce it to Sturn Liouville differential equation.	
0-6		UK Attempt all Questions	[1/]
Q-0	a.	Find eigen values and corresponding eigenfunction of the equation $y'' + \lambda y = 0$ on the interval $[0, c]$ with boundary conditions	(07)
	h	y(0) = 0 = y(c).	(07)
	D.	equation with substitution $x^2y = z$, where $\lambda \in R$ and reduce it to Sturn Liouville differential equation.	(07)

